Hermite-Lagrange Interpolation and Schur's Expansion of $\sin \pi x$

Gerd Berger

Rechenzentrum, Martin-Luther-Universität Halle, DDR-4020 Halle, East Germany

AND

Manfred Tasche
Sektion Mathematik, Wilhelm-Pieck-Universität Rostock, DDR - 2500 Rostock, East Germany

Communicated by G. Meinardus
Received May 1, 1985

With the help of Taylor's formula in the theory of right-invertible operators, a new constructive approach to the Hermite-Lagrange 2-point interpolation polynomial with explicit remainder and to Schur's expansion of $\sin \pi x$ is presented. This improves earlier results of I. Schur, L. Carlitz, G. C. Rota, D. Kahaner, A. Odlyzko, S. Wrigge, and A. Fransen. Also, we prove: If $f \in C^{\infty}[0,1]$ is completely convex, then

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(a_{n}+b_{n} x\right)(x(1-x))^{n}, \quad a_{n} \geqslant 0, a_{n}+b_{n} \geqslant 0,
$$

uniformly in $[0,1]$. © 1988 Academic Press, Inc.

1. Introduction

It was proved by I. Schur (see [4, pp. 128 and 307]) that in the convergent expansion

$$
\begin{equation*}
\sin \pi x=\sum_{n=1}^{\infty} \frac{1}{n!} a_{n}(x(1-x))^{n}, \quad(x \in[0,1]) \tag{1}
\end{equation*}
$$

the coefficients a_{n} are positive, but no explicit expression for a_{n} was given. Later, L. Carlitz [3] found the explicit formula

$$
\begin{equation*}
a_{r+1}=\sum_{s=0}^{[r / 2]}(-1)^{s} \frac{(2 r-2 s)!}{(r-2 s)!(2 s)!} \pi^{2 s+1} \quad(r=0,1, \ldots) \tag{2}
\end{equation*}
$$

but it is not clear from his result that all coefficients are positive. Now G. C. Rota, D. Kahaner, and A. Odlyzko [5] have shown that

$$
\begin{equation*}
a_{n}=\frac{\pi}{(n-1)!} \int_{0}^{\pi / 2}(t(\pi-t))^{n-1} \sin t d t \tag{3}
\end{equation*}
$$

From this, the positivity of a_{n} can be inferred. But the expansion of $\exp a x$ in powers of $x(1-x)$, given in [5], is not correct. Also, S. Wrigge and A. Fransén [8] have applied partial sums of (1) for the rapid calculation of $\sin \pi x$ and other trigonometric functions. This was done independently of the earlier results [3-5].

In the following note, a new constructive approach to such expansions is presented by the help of Taylor's formula in the theory of right-invertible operators [6]. Note that there is a close connection between HermiteLagrange 2-point interpolation and Schur's expansion. Further, we prove that for every completely convex function $f \in C^{\infty}[0,1]$, the series with nonnegative terms

$$
\begin{equation*}
(1-x) f(0)+x f(1)+\sum_{n=1}^{\infty} \frac{1}{n!}\left(a_{n}+b_{n} x\right)(x(1-x))^{n} \tag{4}
\end{equation*}
$$

converges uniformly in $[0,1]$ to $f(x)$, where the constants a_{n} and b_{n} are defined by (15).

2. Taylor's Formula

Let X be a Banach space. We consider only linear operators defined on linear subsets of X and with ranges in X. The domain, image, and kernel of an operator A will be denoted by $\operatorname{dom} A, \operatorname{im} A$, and $\operatorname{ker} A$, respectively. By I we denote the identity. In the following let D : $\operatorname{dom} D \rightarrow X(\operatorname{dom} D \subseteq X)$ be a right-invertible operator.

Remark. Assume that $T_{n}: X \rightarrow \operatorname{dom} D^{n}(n=1,2, \ldots)$ is a bounded right inverse of D^{n} with the corresponding projector $P_{n}=I-T_{n} D^{n}$: $\operatorname{dom} D^{n} \rightarrow \operatorname{ker} D^{n}$. Then we obtain the following relation on $\operatorname{dom} D$:

$$
T_{n}-T_{n+1} D=\left(T_{n} D^{n}-T_{n+1} D^{n+1}\right) T_{n}=\left(P_{n+1}-P_{n}\right) T_{n}=P_{n+1} T_{n}
$$

where $Q_{n}=P_{n+1} T_{n}$ maps dom D into ker D^{n+1}. The following result is the converse statement. This will be a useful method of construction of right inverses.

Theorem 1. Let $T_{n}: X \rightarrow \operatorname{dom} D^{n}(n=1,2, \ldots)$ be bounded operators and let $P_{n}: \operatorname{dom} D^{n} \rightarrow \operatorname{ker} D^{n}(n=1,2, \ldots)$ be projectors onto ker D^{n}. If
(i) $D T_{1}=I$,
(ii) $T_{n+1} D=T_{n}-Q_{n}(n=1,2, \ldots)$ on $\operatorname{dom} D$ with an operator Q_{n} : $\operatorname{dom} D \rightarrow \operatorname{ker} D^{n+1}$,
(iii) $P_{n} T_{n}=0(n=1,2, \ldots)$,
then T_{n} is a right inverse of D^{n} with the property

$$
\begin{equation*}
P_{n}=I-T_{n} D^{n} . \tag{5}
\end{equation*}
$$

Further, it holds

$$
\begin{align*}
Q_{n} & =P_{n+1} T_{n} & & \text { on } \operatorname{dom} D, \\
P_{n+1}-P_{n} & =Q_{n} D^{n} & & \text { on } \operatorname{dom} D^{n+1} . \tag{6}
\end{align*}
$$

Proof. By (i) and (iii), T_{1} is a right inverse of D with $P_{1}=I-T_{1} D$. Assume that T_{n} is a right inverse of D^{n} with (5). Note that a right inverse T_{n} of D^{n} is uniquely determined by P_{n}. Then by (i) and (ii),

$$
\begin{equation*}
D^{n+1} T_{n+1}=D^{n+1}\left(T_{n} T_{1}-Q_{n} T_{1}\right)=D\left(D^{n} T_{n}\right) T_{1}=I \tag{7}
\end{equation*}
$$

on X. Since T_{n} is a right inverse of D^{n}, it follows that T_{n} maps dom D into $\operatorname{dom} D^{n+1}$. By (ii) and (iii) we obtain that on dom D,

$$
0=P_{n+1} T_{n+1} D=P_{n+1} T_{n}-Q_{n},
$$

i.e., $Q_{n}=P_{n+1} T_{n}$ on dom D. By (iii) and (7), we have $P_{n+1}=I-T_{n+1} D^{n+1}$. Hence for $n=1,2, \ldots$,

$$
P_{n+1}-P_{n}=T_{n} D^{n}-T_{n+1} D^{n+1}=\left(T_{n}-T_{n+1} D\right) D^{n}=Q_{n} D^{n} .
$$

This completes the proof.
Let $f \in \operatorname{dom} D^{N}(N \geqslant 2)$ be given. Then under the assumptions of Theorem 1, we obtain by (5) and (6) Taylor's formula (see [6])

$$
f=P_{N} f+T_{N} D^{N} f
$$

with

$$
\begin{equation*}
P_{N} f=P_{1} f+\sum_{n=1}^{N-1}\left(P_{n+1}-P_{n}\right) f=P_{1} f+\sum_{n=1}^{N-1} Q_{n} D^{n} f . \tag{8}
\end{equation*}
$$

3. Hermite-Lagrange Interpolation

Now let $X=C[0,1], D=d^{2} / d t^{2}$, and $\operatorname{dom} D=C^{2}[0,1]$. Further, let $P_{n}: C^{2 n}[0,1] \rightarrow \operatorname{ker} D^{n}$ be the following projector onto ker D^{n} mapping
$f \in C^{2 n}[0,1]$ to the corresponding Hermite-Lagrange 2-point interpolation polynomial $p=P_{n} f$ of order $2 n-1$ with

$$
p^{(j)}(0)=f^{(j)}(0), \quad p^{(j)}(1)=f^{(j)}(1) \quad(j=0, \ldots, n-1)
$$

In particular,

$$
\left(P_{1} f\right)(x)=(1-x) f(0)+x f(1) \quad(x \in[0,1])
$$

THEOREM 2. The corresponding right inverse T_{n} of $D^{n}(n=1,2, \ldots)$ with $P_{n}=I-T_{n} D^{n}$ can be expressed in the form

$$
\begin{equation*}
\left(T_{n} f\right)(x)=-((n-1)!)^{-2} \int_{x}^{1} \int_{0}^{1} f(s t)(x(x-s) t(1-t))^{n-1} x t d t d s \tag{9}
\end{equation*}
$$

Further, the operator $Q_{n}=T_{n}-T_{n+1} D: \operatorname{dom} D \rightarrow \operatorname{ker} D^{n+1}$ is given by

$$
\begin{align*}
\left(Q_{n} f\right)(x)= & (n!(n-1)!)^{-1}(x(x-1))^{n} \\
& \times \int_{0}^{1} f(t)(t(1-t))^{n-1}(1-t-x+2 x t) d t \tag{10}
\end{align*}
$$

Remark. For given $f \in C[0,1], T_{n} f=y \in C^{2 n}[0,1](n=1,2, \ldots)$ is the unique solution of the boundary value problem

$$
y^{(2 n)}(x)=f(x), \quad y^{(j)}(0)=y^{(j)}(1)=0 \quad(j=0, \ldots, n-1)
$$

Proof. We apply Theorem 1. By

$$
\int_{0}^{x}(x-u) f(u) d u=\int_{0}^{x} \int_{0}^{1} f(s t) x t d t d s
$$

it follows that

$$
\begin{aligned}
\left(T_{1} f\right)(x) & =\int_{0}^{x}(x-u) f(u) d u-x \int_{0}^{1}(1-u) f(u) d u \\
& =-\int_{x}^{1} \int_{0}^{1} f(s t) x t d t d s
\end{aligned}
$$

For the proof of the equation

$$
\begin{equation*}
T_{n} f=T_{n+1} D f+Q_{n} f \quad(n=1,2, \ldots) \tag{11}
\end{equation*}
$$

for $f \in C^{2}[0,1]$, we replace t in the kernel of $T_{n} f$ by $-(t-1)+$ $(d / d t)(t(t-1))$. Integrating the first term of $T_{n} f$ by parts with respect to s
and integrating the second term of $T_{n} f$ by parts with respect to t, we obtain

$$
\begin{aligned}
\left(T_{n} f\right)(x)= & (n!(n-1)!)^{-1}(x(x-1))^{n} \int_{0}^{1} f(t)(t(1-t))^{n-1}(1-t) d t \\
& -(n!(n-1)!)^{-1} \int_{x}^{1} \int_{0}^{1} f^{\prime}(s t)(x(x-s))^{n-1}(t(1-t))^{n} x^{2} d t d s
\end{aligned}
$$

Integrating now the second integral by parts with respect to s, we find (11) with (10). Obviously, $\operatorname{im} Q_{n} \subset \operatorname{ker} D^{n+1}$. The condition $P_{n} T_{n} f=0$ for $f \in X$, which means

$$
\left(T_{n} f\right)^{(j)}(0)=\left(T_{n} f\right)^{(j)}(1)=0 \quad(j=0, \ldots, n-1)
$$

is fulfilled. This completes the proof.
By $Q_{n}=T_{n}-T_{n+1} D$ we obtain in particular

$$
\begin{equation*}
\left(Q_{n} 1\right)(x)=\left(T_{n} 1\right)(x)=((2 n)!)^{-1}(x(x-1))^{n} . \tag{12}
\end{equation*}
$$

If $\|f\|$ denotes the Čebyšev norm of $f \in X$, then by (9), (10), and (12) it holds for all $x \in[0,1]$ that

$$
\begin{align*}
& \left|\left(T_{n} f\right)(x)\right| \leqslant((2 n)!)^{-1}\|f\|(x(1-x))^{n}, \tag{13}\\
& \left|\left(Q_{n} f\right)(x)\right| \leqslant((2 n)!)^{-1}\|f\|(x(1-x))^{n}
\end{align*}
$$

and hence

$$
\begin{aligned}
& \left\|T_{n} f\right\| \leqslant((2 n)!)^{-1} 2^{-2 n}\|f\|, \\
& \left\|Q_{n} f\right\| \leqslant((2 n)!)^{-1} 2^{-2 n}\|f\| .
\end{aligned}
$$

These inequalities are sharp by (12).
Corollary 3. If $f \in C^{2 N}[0,1](N \geqslant 2)$, then the Hermite-Lagrange 2-point interpolation polynomial $P_{N} f$ with respect to f possesses the form

$$
\begin{equation*}
\left(P_{N} f\right)(x)=(1-x) f(0)+x f(1)+\sum_{n=1}^{N-1} \frac{1}{n!}\left(a_{n}+b_{n} x\right)(x(1-x))^{n} \tag{14}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{n}=\frac{(-1)^{n}}{(n-1)!} \int_{0}^{1} f^{(2 n)}(t)(t(1-t))^{n-1}(1-t) d t \tag{15}\\
& b_{n}=\frac{(-1)^{n}}{(n-1)!} \int_{0}^{1} f^{(2 n)}(t)(t(1-t))^{n-1}(2 t-1) d t
\end{align*}
$$

The remainder of this interpolation is given by $f-P_{N} f=T_{N} D^{N} f$ with

$$
\begin{equation*}
\left|f(x)-\left(P_{N} f\right)(x)\right| \leqslant((2 N)!)^{-1}\left\|f^{(2 N)}\right\|(x(1-x))^{N} \quad(x \in[0,1]) \tag{16}
\end{equation*}
$$

The proof follows immediately by (10) and (13).

4. Expansion Theorems

Theorem 4. If $f \in C^{\infty}[0,1]$ is a given function with the property

$$
\begin{equation*}
\lim _{n \rightarrow \infty}((2 n)!)^{-1} 2^{-2 n}\left\|f^{(2 n)}\right\|=0 \tag{17}
\end{equation*}
$$

then the series (4) converges uniformly in $[0,1]$ to $f(x)$, where a_{n} and b_{n} are given by (15). If $f \in C^{\infty}[0,1]$ is symmetric around $x=\frac{1}{2}$, that means

$$
f(x)=f(1-x) \quad(x \in[0,1])
$$

then for $n=1,2, \ldots$,

$$
\begin{equation*}
a_{n}=\frac{(-1)^{n}}{(n-1)!} \int_{0}^{1 / 2} f^{(2 n)}(t)(t(1-t))^{n-1} d t, \quad b_{n}=0 \tag{18}
\end{equation*}
$$

If $f \in C^{\infty}[0,1]$ is antisymmetric around $x=\frac{1}{2}$, that means

$$
f(x)=-f(1-x) \quad(x \in[0,1])
$$

then for $n=1,2, \ldots$,

$$
\begin{equation*}
a_{n}=\frac{(-1)^{n}}{(n-1)!} \int_{0}^{1 / 2} f^{(2 n)}(t)(t(1-t))^{n-1}(1-2 t) d t, \quad b_{n}=-2 a_{n} \tag{19}
\end{equation*}
$$

Proof. By (16), we obtain

$$
\left\|f-P_{N} f\right\| \leqslant((2 N)!)^{-1} 2^{-2 N}\left\|f^{(2 N)}\right\|
$$

for each $N \geqslant 2$. Taking the limit as $N \rightarrow \infty$, we get by the assumption (17) that

$$
f=\lim _{N \rightarrow \infty} P_{N} f
$$

where $P_{N} f$ is given by (14). If f is symmetric around $x=\frac{1}{2}$, then it follows (18) by means of (15). In the antisymmetric case, (19) follows analogously by (15). This completes the proof.

A function $f \in C^{\infty}[0,1]$ is called completely convex [7] if, for all $n=0,1, \ldots$,

$$
\begin{equation*}
(-1)^{n} f^{(2 n)}(x) \geqslant 0 \quad(x \in[0,1]) . \tag{20}
\end{equation*}
$$

A familiar completely convex function is $\sin \pi x$.
Theorem 5. Let $f \in C^{\alpha}[0,1]$ be completely convex. Then the series (4) with non-negative terms converges uniformly in $[0,1]$ to $f(x)$, where a_{n} and b_{n}, given by (15), fulfill the conditions $a_{n} \geqslant 0, a_{n}+b_{n} \geqslant 0(n=1,2, \ldots)$.

Proof. If f is completely convex, then for all $n=0,1, \ldots$,

$$
0 \leqslant(-1)^{n} f^{(2 n)}(x) \leqslant c \pi^{2 n} \quad(x \in[0,1])
$$

with some constant $c \geqslant 0$ [2]. The uniform convergence of (4) is a consequence of Theorem 4 , since condition (17) is fulfilled by

$$
((2 n)!)^{-1} 2^{2 n}\left\|f^{(2 n)}\right\| \leqslant((2 n)!)^{-1}(\pi / 2)^{-2 n} c .
$$

We obtain by (15) and (20) that $a_{n} \geqslant 0$ and $a_{n}+b_{n} \geqslant 0(n=0,1, \ldots)$. Thus all functions

$$
\frac{1}{n!}\left(a_{n}+b_{n} x\right)(x(1-x))^{n}
$$

are non-negative on $[0,1]$. This completes the proof.
Remark. For the connection between completely convex functions and Lidstone series see [1,2].

5. Schur's Expansion

First we consider the function $\sin \pi x$. Obviously, this function is completely convex and symmetric around $x=\frac{1}{2}$. Hence by (18), we obtain (3) and $b_{n}=0(n=1,2, \ldots)$. Using the estimate

$$
\pi x(1-x) \leqslant \sin \pi x \leqslant 4 x(1-x) \quad\left(x \in\left[0, \frac{1}{2}\right]\right),
$$

it follows by (3) that

$$
\begin{aligned}
& \frac{\pi^{2 n+1}}{4(2 n+1)(2 n-1) \cdots(n+1)} \\
& \quad<a_{n}<\frac{\pi^{2 n}}{(2 n+1)(2 n-1) \cdots(n+1)} \quad(n=1,2, \ldots) .
\end{aligned}
$$

Hence the sequence a_{n} tends for $n \geqslant 3$ monotone decreasing to zero.

By repeated integration by parts of (3), we get the recurrence relation

$$
\begin{equation*}
a_{n+2}=(4 n+2) a_{n+1}-\pi^{2} a_{n} \quad(n=1,2, \ldots) \tag{21}
\end{equation*}
$$

with $a_{1}=\pi, a_{2}=2 \pi$ (see also [8]). Then we obtain in particular

$$
\begin{gathered}
a_{3}=12 \pi-\pi^{3}, \quad a_{4}=120 \pi-12 \pi^{3}, \\
a_{5}=1680 \pi-180 \pi^{3}+\pi^{5}
\end{gathered}
$$

Using Taylor's expansion of $\sin \pi x$ at $x=0$, (18) yields the expression (see [8])

$$
a_{n}=\frac{1}{2} \sum_{k=n}^{\infty}(-1)^{n+k} \frac{\pi^{2 k+1}}{2 k(2 k-1) \cdots(2 k-n+1)(2 k-2 n+1)!} .
$$

Let $r=0,1, \ldots$ be fixed and let

$$
p(x)=x^{r}(\pi-x)^{r}=\left(\pi^{2} / 4-(x-\pi / 2)^{2}\right)^{r}
$$

Observing that then

$$
\begin{array}{rlrl}
p^{(k)}(0) & =0 & \text { for } k=0, \ldots, r-1, \\
p^{(k)}(0) & =(-1)^{k-r} k!\binom{r}{k-r} \pi^{2 r-k} & \text { for } k=r, \ldots, 2 r, \\
p^{(2 k-1)}(\pi / 2) & =0 & & \text { for } k=1, \ldots, r
\end{array}
$$

and using repeated integrations by parts of (3), we obtain (2):

$$
\begin{aligned}
a_{r+1} & =\frac{\pi}{r!} \int_{0}^{\pi / 2} p(t) \sin t d t \\
& =\frac{\pi}{r!} \sum_{k=[(r+1) / 2]}^{r}(-1)^{k} p^{(2 k)}(0) \\
& =\sum_{s=0}^{[r / 2]}(-1)^{s} \frac{(2 r-2 s)!}{(r-2 s)!(2 s)!} \pi^{2 s+1} .
\end{aligned}
$$

We summarize:
Corollary 6. Let a_{n} be the coefficients given by (2), (3), or (21). Then we have, for $N \geqslant 2$,

$$
0 \leqslant \sin \pi x-\sum_{n=1}^{N-1} \frac{1}{n!} a_{n}(x(1-x))^{n} \leqslant \frac{1}{(2 N)!}\left(\frac{\pi}{2}\right)^{2 N} \quad(x \in[0,1]) .
$$

In the case $N=6$, the resulting error of this approximation is less than 5×10^{-7}.
Now we consider other examples. The function $\sin 2 \pi x$ is antisymmetric around $x=\frac{1}{2}$ and fulfills the condition (17). Hence by Theorem 4 we obtain

$$
\begin{equation*}
\sin 2 \pi x=(1-2 x) \sum_{n=1}^{\infty} \frac{1}{n!} c_{n}(x(1-x))^{n} \quad(x \in[0,1]) \tag{22}
\end{equation*}
$$

where by (19)

$$
\begin{equation*}
c_{n}=\frac{(2 \pi)^{2 n}}{(n-1)!} \int_{0}^{1 / 2}(t(1-t))^{n-1}(1-2 t) \sin 2 \pi t d t>0 \tag{23}
\end{equation*}
$$

By repeated integration by parts of (23), we see that the coefficients c_{n} satisfy the recurrence relation

$$
c_{n+2}=(4 n+6) c_{n+1}-4 \pi^{2} c_{n} \quad(n=1,2, \ldots)
$$

with $c_{1}=2 \pi, c_{2}=12 \pi$ (see also [8]). By termwise integration of (22), it follows then that

$$
(\sin \pi x)^{2}=\sum_{n=2}^{\infty} \frac{\pi}{n!} c_{n-1}(x(1-x))^{n} .
$$

Acknowledgment

The authors thank Professor L. Berg for helpful suggestions.

Reffrences

1. R. P. Boas, Representations for completely convex functions, Amer. J. Math. 81 (1959), 709-714.
2. J. D. Buckholtz and J. K. Shaw, Generalized completely convex functions and Sturm-Liouville operators, SIAM J. Math. Anal. 6 (1975), 812-828.
3. L. Carlitz, Note on Schur's expansion of $\sin \pi x$, Boll. Un. Mat. Ital. (3) 21 (1966), 353-357.
4. G. Pólya and G. Szegö, "Aufgaben und Lehrsätze aus der Analysis I," Springer-Verlag, Berlin, 1925.
5. G. C. Rota, D. Kahaner, and A. Odlyzko, Finite operator calculus, J. Math. Anal. Appl. 42 (1973), 685-760.
6. M. Tasche, A unified approach to interpolation methods, J. Integal Equations 4 (1982), 55-75.
7. D. V. Widder, Functions whose even derivatives have a prescribed sign, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 657-659.
8. S. Wrigge and A. Fransen, A general method of approximation, Part I, Math. Comp. 38 (158) (1982), 567-588.
