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With the help of Taylor's formula in the theory of right-invertible operators, a
new constructive approach to the Hermite-Lagrange 2-point interpolation
polynomial with explicit remainder and to Schur's expansion of sin nx is presented.
This improves earlier results of I. Schur, 1. Carlitz, G. C. Rota, D. Kahaner,
A.Odlyzko, S. Wrigge, and A. Fransen. Also, we prove: If j E C<XJ[O, I] is com
pletely convex, then

00 1
j(x)= L -(an+bnx)(x(l-x))n,

n!
ne:=O

uniformly in [0, I]. © 1988 Academic Press, Inc.

1. INTRODUCTION

It was proved by I. Schur (see [4, pp. 128 and 307]) that in the con
vergent expansion

00 1
sin 7r.X = I .. an(x(l- xW, (x E [0, IJ), (l)

n= In,

the coefficients an are positive, but no explicit expression for an was given.
Later, L. Carlitz [3] found the explicit formula

_ [7/2] s (2r-2s)! 2s+1

ar+l- s~o (-1) (r-2s)!(2s)!7r.

17

(r = 0, 1, ... ), (2)
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but it is not clear from his result that all coefficients are positive. Now
G. C. Rota, D. Kahaner, and A. Odlyzko [5] have shown that

n f"/2
an=(n-l)! 0 (t(n-t)r-

I
sin tdt. (3)

From this, the positivity of an can be inferred. But the expansion of exp ax
in powers of x(l-x), given in [5], is not correct. Also, S. Wrigge and
A. Fransen [8] have applied partial sums of (1) for the rapid calculation of
sin nx and other trigonometric functions. This was done independently of
the earlier results [3-5].

In the following note, a new constructive approach to such expansions is
presented by the help of Taylor's formula in the theory of right-invertible
operators [6]. Note that there is a close connection between Herrnite
Lagrange 2-point interpolation and Schur's expansion. Further, we prove
that for every completely convex functionJ E COO [0, 1], the series with non
negative terms

converges uniformly in [0, 1] to J(x), where the constants an and bn are
defined by (15).

2. TAYLOR'S FORMULA

Let X be a Banach space. We consider only linear operators defined on
linear subsets of X and with ranges in X. The domain, image, and kernel of
an operator A will be denoted by dom A, im A, and ker A, respectively. By
I we denote the identity. In the following let D: dom D --+ X (dom D ~ X)
be a right-invertible operator.

Remark. Assume that Tn: X --+ dom D n (n = 1, 2, ... ) is a bounded right
inverse of D n with the corresponding projector Pn= I - Tn Dn:
dom D n

--+ ker D n
• Then we obtain the following relation on dom D:

where Qn = Pn+ 1 Tn maps dom D into ker D n+ I. The following result is the
converse statement. This will be a useful method of construction of right
inverses.

THEOREM 1. Let Tn: X --+ dom D n (n = 1, 2, ... ) be bounded operators and
let Pn: dom D n

--+ ker Dn (n = 1, 2, ... ) be projectors onto ker Dn. If
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(i) DT1 = I,

(ii) Tn+ID=Tn-Qn (n=1,2, ... ) on domD with an operator Qn:
dom D~ ker Dn + I,

(iii) PnTn=O (n=1,2, ... ),

then Tn is a right inverse of Dn with the property

Further, it holds

(5)

Qn=Pn+ITn

Pn+I-Pn=QnDn

on domD,

on dom Dn+ l
•

(6)

Proof By (i) and (iii), T1 is a right inverse of D with P1=I-T1D.
Assume that Tn is a right inverse of Dn with (5). Note that a right inverse
Tn of Dn is uniquely determined by Pn- Then by (i) and (ii),

Dn+ITn+1 = Dn+I(TnTI - Qn Td = D(DnTn) T1= I (7)

on X. Since Tn is a right inverse of Dn, it follows that Tn maps dom D into
dom D n + I. By (ii) and (iii) we obtain that on dom D,

i.e., Qn=Pn+ITn on domD. By (iii) and (7), we have
Pn+1 = 1- Tn+IDn+ I. Hence for n = 1, 2, ...,

This completes the proof. I

Let f E dom D N (N~ 2) be given. Then under the assumptions of
Theorem 1, we obtain by (5) and (6) Taylor's formula (see [6])

f=PNf+TNDNf

with
N-I N-I

PNf=PJ+ L (Pn+I-Pn)f=PJ + L QnDnf (8)
n=l n=l

3. HERMITE-LAGRANGE INTERPOLATION

Now let X=C[O, 1], D=d2/dt2
, and domD=C2 [O, 1]. Further, let

Pn: C2n[o, 1] ~ ker Dn be the following projector onto ker Dn mapping
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f E C2n [0, 1] to the corresponding Hermite-Lagrange 2-point interpolation
polynomial p = Pnf of order 2n - 1 with

In particular,

(j = 0, ..., n - 1).

(Pd)(x) = (1 - x) f(O) + xf(l) (xE[O,I]).

THEOREM 2. The corresponding right inverse Tn of Dn (n = 1, 2, ... ) with
Pn= 1- TnDn can be expressed in the form

(Tnf)(x) = -((n-l)!)-2rff(st)(x(x-s)t(l-tW-Ixtdtds. (9)
x 0

Further, the operator Qn= Tn - Tn + I D: dom D -. ker Dn+ I is given by

(Qnf)(x) = (n!(n - I)!) -I(X(X - 1))n

x ff(t)(t(1-tW- I(I-t-x+2xt)dt. (10)
o

Remark. For given f E C[O, 1], Tnf = y E C2n [0, 1] (n = 1, 2, ... ) is the
unique solution of the boundary value problem

yl2n)(x) = f(x), (j = 0, ..., n - I ).

Proof We apply Theorem 1. By

Ix (x - u) f(u) du =rf f(st) xt dt ds
o 0 0

it follows that

(Td)(x) = IX (x - u) f(u) du - x f (1- u) f(u) du
o 0

= - rf f(st)xtdtds.
x 0

For the proof of the equation

Tnf = Tn+ IDf + Qnf (n = 1, 2, ... ) (11 )

for fEC2[0, 1], we replace t in the kernel of Tnf by -(t-l)+
(d/dt)(t(t-l)). Integrating the first term of Tnfby parts with respect to s



SCHUR'S EXPANSION 21

and integrating the second term of Tnf by parts with respect to t, we
obtain

(Tnf)(x) = (n! (n - I)!) - 1(x(x-I) t rf( t)( t( 1 - tW- 1(1 - t) dt
o

- (n!(n - 1)!) -Irrf'(st)(x(x - sW- 1(t(1 - tW x 2dt ds.
x 0

Integrating now the second integral by parts with respect to s, we find (11)
with (10). Obviously, im Qncker Dn+ l

. The condition PnTnf=O for
f E X, which means

(j = 0, ..., n - 1)

(13)

is fulfilled. This completes the proof. I

If Ilfll denotes the Cebysev norm offEX, then by (9), (10), and (12) it
holds for all x E [0, 1] that

I(Tnf)(x)1 ~ «(2n)!)-lllfll (x(l-xW,

I(Qnf)(x)1 ~ ((2n)!)-lllfll (x(l-x)t

and hence

II Tnfll ~ «2n)!)-1 2- 2n Ilfll,

IIQnfl1 ~ «2n)!)-1 2- 2n Ilfll·

These inequalities are sharp by (12).

COROLLARY 3. If f E C2N [0, 1] (N~ 2), then the Hermite-Lagrange
2-point interpolation polynomial PNf with respect to f possesses the form

N-I 1
(PNf)(x) = (1 - x)f(O) + xf(l) + L .. (an + bnx)(x(l- xW

n=1 n.
with

( It 1
an = - f j<2n l (t)(t(1 - t)t-I(l- t) dt,

(n - I)! 0

( l)n 1
bn= - f f(2n l(t)(t(I-t))n-I(2t-l)dt.

(n -I)! 0

(14)

(15)
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The remainder of this interpolation is given by f - P Nf = TN D Nf with

(x E [0, 1]). (16)

The proof follows immediately by (10) and (13).

4. EXPANSION THEOREMS

THEOREM 4. If f E COO [0, 1] is a given function with the property

lim ((2n)!)-12- 2n llf(2n)11 =0,
n~ 00

(17)

then the series (4) converges uniformly in [0, 1] to f(x), where an and bn are
given by (15). Iff E COO [0, 1] is symmetric around x =!, that means

then for n = 1, 2, ...,

f(x) = f(1 - x) (xE[O,I]),

( - 1t fl /2
an = j<2n)(t)(t(l- tW~ 1 dt,

(n - I)! 0

Iff E COO [0, 1] is antisymmetric around x =!, that means

(18)

then for n = 1, 2, ...,

f(x) = -f(1- x) (xE[O,I]),

(-It fl /2
an= f(2n l(t)(t(I-t)t- I (1-2t)dt,

(n -I)! 0

Proof By (16), we obtain

(19)

for each N~ 2. Taking the limit as N ~ 00, we get by the assumption (17)
that

where P N f is given by (14). Iff is symmetric around x =!, then it follows
(18) by means of (15). In the antisymmetric case, (19) follows analogously
by (15). This completes the proof. I
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A function 1 E ex [0, 1] is called completely convex [7] if, for all
n=O, 1, ... ,

(XE[O, 1]). (20)

A familiar completely convex function is sin nx.

THEOREM 5. Let 1 E e~ [0, 1] be completely convex. Then the series (4)
with non-negative terms converges uniformly in [0, 1] to I(x), where an and
b", given by (15),fulfill the conditions an~O, an+b,,~O (n= 1, 2, 00')'

Proof If1 is completely convex, then for all n = 0, 1, 00"

(xE[O,I])

with some constant c ~°[2]. The uniform convergence of (4) is a con
sequence of Theorem 4, since condition (17) is fulfilled by

((2n)!) -I 2 2"11/(2n)1I ~ ((2n)!) - '(n/2f 2"C.

We obtain by (15) and (20) that a,,~O and a,,+bn~O (n=O, 1'00')' Thus
all functions

are non-negative on [0, 1]. This completes the proof. I
Remark. For the connection between completely convex functions and

Lidstone series see [1, 2].

5. SCHUR'S EXPANSION

First we consider the function sin nx. Obviously, this function is com
pletely convex and symmetric around x = l Hence by (18), we obtain (3)
and hn=O (n= 1, 2, 00')' Using the estimate

nx(1-x)~sinnx~4x(l-x) (XE [0, !J),

it follows by (3) that

4(2n + 1)(2n - 1) ... (n + 1)

n2n

< a" < -:-::---:-:--cc::-----:-----:-----:------:-
(2n + 1)(2n - 1) ... (n + 1)

(n = 1, 2, 00')'

Hence the sequence a" tends for n ~ 3 monotone decreasing to zero.



24 BERGER AND TASCHE

By repeated integration by parts of (3), we get the recurrence relation

(n= 1, 2, ... ) (21 )

with at = n, a2= 2n (see also [8]). Then we obtain in particular

a3 = 12n - n3, a4 = 120n - 12n3,

as = 1680n - 180n3+ n S
•

Using Taylor's expansion of sin nx at x = 0, (18) yields the expression (see
[8])

1 00 n2k + 1

an =2 k~n (_l)n+k 2k(2k -1)· .. (2k- n + 1)(2k - 2n + 1)!

Let r = 0, 1, ... be fixed and let

p(x) = xr(n - x)' = (n 2/4 - (x - n/2f)'.

Observing that then

p1k)(0) = 0

plkl(0)=(_1)k-rkl( r )n2r - k

k-r

p(2k - 1l(n/2) = 0

for k=O, ..., r-1,

for k = r, ..., 2r,

for k= 1, ..., r

n

and using repeated integrations by parts of (3), we obtain (2):

n f7</2
ar+t=, p(t)sintdt

r. 0

r

L (-1 )kp(2k l(0)
r! k~ [(r+ 1)/2]

[r/2] s (2r-2s)! 2s+1

= s~o (-1) (r-2s)!(2s)!n .

We summarize:

COROLLARY 6. Let an be the coefficients given by (2), (3), or (21). Then
we have, for N ~ 2,

N-I 1 1 (n)2N
O~sinnx- n~1 n!an(x(1-xW~(2N)! "2 (xE[0,1]).
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In the case N = 6, the resulting error of this approximation is less than
5 x 1O~7.

Now we consider other examples. The function sin 2nx is antisymmetric
around x = i and fulfills the condition (17). Hence by Theorem 4 we obtain

00 1
sin2nx=(1-2x) L ,cn(x(l-x)t

n= In.

where by (19)

(XE [0, 1]), (22)

(2n)2n 1/2
Cn = f (t(I-t)t- 1(1-2t)sin2ntdt>0. (23)

(n -1)1 0

By repeated integration by parts of (23), we see that the coefficients Cn

satisfy the recurrence relation

(n = 1, 2, ... )

with c l =2n, c2 =12n (see also [8]). By termwise integration of (22), it
follows then that
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